These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking. Author: Hughes EG, Maguire JL, McMinn MT, Scholz RE, Sutherland ML. Journal: Brain Res Mol Brain Res; 2004 May 19; 124(2):114-23. PubMed ID: 15135219. Abstract: Loss of the astrocyte-specific intermediate filament protein, glial fibrillary acidic protein (GFAP) results in an increased susceptibility to ischemic insult, enhanced hippocampal LTP, and decreased cerebellar long-term depression (LTD). Because glutamate receptor activation plays a key role in cell death and cellular plasticity responses, we wanted to determine if alterations in glial glutamate transport could contribute to the GFAP null phenotype. To address functional changes in glutamate transport, we measured glutamate uptake in cortical, cerebellar, and hippocampal synaptosomal preparations from age-matched adult wild type and GFAP null mice and demonstrated a 25-30% reduction in the V(max) for d-aspartate uptake in the cortex and hippocampus of GFAP null animals. Western blot analysis of cortical synaptosomal fractions from wild type and GFAP null animals demonstrated that loss of GFAP results in decreases in both astrocytic (EAAT1) and neuronal (EAAT3) glutamate transporter subtypes. Immunohistochemical analysis demonstrated a region-specific modification of neuronal glutamate transporter, EAAT3 trafficking in the GFAP null phenotype. Analysis of primary cortical astrocyte cultures prepared from GFAP null and wild type mice demonstrated that loss of GFAP results in an inability to traffic the glial glutamate transporter, EAAT2, to the surface of the cell following protein kinase A (PKA) stimulation by dibutyryl cAMP. Taken together, these results suggest that the intermediate filament protein, GFAP plays a key role in modulating astrocytic and neuronal glutamate transporter trafficking and function.[Abstract] [Full Text] [Related] [New Search]