These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Investigating local network interactions underlying first- and second-order processing. Author: Ellemberg D, Allen HA, Hess RF. Journal: Vision Res; 2004; 44(15):1787-97. PubMed ID: 15135994. Abstract: We compared the spatial lateral interactions for first-order cues to those for second-order cues, and investigated spatial interactions between these two types of cues. We measured the apparent modulation depth of a target Gabor at fixation, in the presence and the absence of horizontally flanking Gabors. The Gabors' gratings were either added to (first-order) or multiplied with (second-order) binary 2-D noise. Apparent "contrast" or modulation depth (i.e., the perceived difference between the high and low luminance regions for the first-order stimulus, or between the high and low contrast regions for the second-order stimulus) was measured with a modulation depth-matching paradigm. For each observer, the first- and second-order Gabors were equated for apparent modulation depth without the flankers. Our results indicate that at the smallest inter-element spacing, the perceived reduction in modulation depth is significantly smaller for the second-order than for the first-order stimuli. Further, lateral interactions operate over shorter distances and the spatial frequency and orientation tuning of the suppression effect are broader for second- than first-order stimuli. Finally, first- and second-order information interact in an asymmetrical fashion; second-order flankers do not reduce the apparent modulation depth of the first-order target, whilst first-order flankers reduce the apparent modulation depth of the second-order target.[Abstract] [Full Text] [Related] [New Search]