These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biological nitrogen removal using bio-sorbed internal organic carbon from piggery wastewater in a post-denitrification MLE process.
    Author: Park SM, Jun HB, Chung YJ, Lee SH.
    Journal: Water Sci Technol; 2004; 49(5-6):373-80. PubMed ID: 15137447.
    Abstract:
    Nitrogen removal from a piggery wastewater was investigated in a post-denitrification modified Lüdzack Ettinger (PDMLE) process. Overall hydraulic retention time (HRT) of the PDMLE, consisting of contact/separator (C/S), nitrification, denitrification and re-aerobic bioreactor was 10 days. 60% of the influent SCOD was separated in the C/S by contacting the return sludge with the synthetic wastewater, however, only 10% of the influent SCOD was separated from the piggery wastewater. Biosorption capacities of the synthetic wastewater and piggery wastewater were 800 and 150 mg/g-MLSS, respectively. In spite of the high organic and nitrogen load, nitrification efficiency was above 95%, and nitrification rate was about 180 mg-NH4+-N/L x day. The removed delta COD/delta nitrate ratios in the denitrification tank were 4.0 and 11.5 g-SCOD/g-nitrate, while denitrification rates were 8.4 and 2.6 mg-nitrate/day for synthetic and piggery wastewater, respectively. In the proposed PDMLE process, both bio-sorbed and bypassed organic matter could be successfully used for nitrate reduction as carbon sources and the final TN removal efficiency was as high as 95%.
    [Abstract] [Full Text] [Related] [New Search]