These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A 3D computer graphics approach to brachytherapy planning. Author: Weichert F, Wawro M, Wilke C. Journal: Int J Cardiovasc Imaging; 2004 Jun; 20(3):173-82. PubMed ID: 15139531. Abstract: Intravascular brachytherapy (IVB) can significantly reduce the risk of restenosis after interventional treatment of stenotic arteries, if planned and applied correctly. In order to facilitate computer-based IVB planning, a three-dimensional reconstruction of the stenotic artery based on intravascular ultrasound (IVUS) sequences is desirable. For this purpose, the frames of the IVUS sequence are properly aligned in space, possible gaps inbetween the IVUS frames are filled by interpolation with radial basis functions known from scattered data interpolation. The alignment procedure uses additional information which is obtained from biplane X-ray angiography performed simultaneously during the capturing of the IVUS sequence. After IVUS images and biplane angiography data are acquired from the patient, the vessel-wall borders and the IVUS catheter are detected by an active contour algorithm. Next, the twist (relative orientation) between adjacent IVUS frames is determined by a sequential triangulation method. The absolute orientation of each frame is established by a stochastic analysis based on anatomical landmarks. Finally, the reconstructed 3D vessel model is visualized by methods of combined volume and polygon rendering. The reconstruction is then used for the computation of the radiation-distribution within the tissue, emitted from a beta-radiation source. All these steps are performed during the percutaneous intervention.[Abstract] [Full Text] [Related] [New Search]