These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Growth inhibition and cell cycle arrest effects of epigallocatechin gallate in the NBT-II bladder tumour cell line.
    Author: Chen JJ, Ye ZQ, Koo MW.
    Journal: BJU Int; 2004 May; 93(7):1082-6. PubMed ID: 15142168.
    Abstract:
    OBJECTIVES: To examine the growth inhibition and cell cycle arrest effects of epigallocatechin gallate (EGCG), a major constituent of green tea polyphenols, on the NBT-II bladder tumour cell line. MATERIALS AND METHODS: Growth inhibition and cell cycle arrest effects of EGCG were evaluated by the tetrazolium assay, flow cytometry and apoptotic DNA ladder tests. The cell cycle-related oncogene and protein expressions in NBT-II bladder tumour cells, when incubated with EGCG, were detected with reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. RESULTS: EGCG inhibited growth of the NBT-II bladder tumour cells in a dose- and time-dependent manner. Flow cytometry showed a G0/G1 arrest in cells when cultured with EGCG at doses of 10, 20 or 40 micro mol/L for 48 or 72 h. The apoptotic DNA ladder test showed that EGCG at 10 micro mol/L induced early apoptosis after 48 h of incubation. A down-regulation of cyclin D1 was detected by RT-PCR when the cells were incubated with EGCG (20 micro mol/L for 48 h. EGCG also down-regulated protein expression of cyclin D1, cyclin-dependent kinase 4/6 and phosphorylated retinoblastoma protein, in both a time- and dose-dependent manner, when detected by Western blot. CONCLUSION: EGCG had growth inhibition and cell-cycle arrest effects in NBT-II bladder tumour cells by down-regulating the cyclin D1, cyclin-dependent kinase 4/6 and retinoblastoma protein machinery for regulating cell-cycle progression.
    [Abstract] [Full Text] [Related] [New Search]