These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of Sapindus saponaria fruits on ruminal fermentation and duodenal nitrogen flow of sheep fed a tropical grass diet with and without legume. Author: Abreu A, Carulla JE, Lascano CE, Díaz TE, Kreuzer M, Hess HD. Journal: J Anim Sci; 2004 May; 82(5):1392-400. PubMed ID: 15144079. Abstract: Six adult African-type hair sheep (BW = 40.3 +/- 6.3 kg) fitted with ruminal and duodenal cannulas were subjected to four treatments. Sheep were offered basal diets at a rate of 80 g of DM/kg of metabolic BW (equivalent to ad libitum access) consisting either of a low-quality grass hay (Brachiaria dictyoneura, 3.7% CP, DM basis) alone or in combination with a forage legume (Cratylia argentea, 18.6% CP, DM basis) in a 3:1 ratio (DM basis). In addition, 0 or 8 g of DM of Sapindus saponaria fruits (12.0% crude saponins, DM basis) per kilogram of metabolic BW was administered intraruminally. Supplementation of C. argentea increased intakes of OM (+21%; P < 0.01) and CP (+130%; P < 0.001), as well as ruminal fluid ammonia N concentrations (from 2.40 to 8.43 mg/dL; P < 0.001). Apparent OM and N digestibilities were not affected by legume addition, but ADF digestibility decreased by 10% (P < 0.01). Total ruminal VFA concentration was unchanged, but acetate:propionate was lower (P < 0.01) and isobutyrate proportion was greater (P < 0.001) with the legume addition. Legume supplementation increased duodenal flows of total N (+56%; P < 0.001), nonammonia N (+52%; P < 0.001), ruminal escape N (+80%; P < 0.001), and microbial N (+28%; P < 0.05). Microbial efficiency was not affected by legume addition. Supplementation of S. saponaria increased (P < 0.05) dietary OM intake by 14%, but had no effect on CP intake and ruminal fluid ammonia concentration or on OM and N digestion. Digestibility of ADF was decreased (P < 0.01) by 10% with S. saponaria as was acetate:propionate (P < 0.001) and the isobutyrate proportion (P < 0.001). Ruminal protozoa counts increased (P < 0.01) by 67% with S. saponaria. Duodenal N flows were not significantly affected by S. saponaria supplementation, except for microbial N flow (+34%; P < 0.01). Microbial efficiency was greater (P < 0.05) by 63% with the addition of S. saponaria. Few interactions between legume and S. saponaria supplementation were observed. The NDF digestibility was decreased with S. saponaria in the grass-alone diet, but not in the legume-supplemented diet (interaction; P < 0.05). Interactions were absent in ruminal fermentation measures and duodenal N flow, indicating that effects were additive. Results suggest that, even when not decreasing ruminal protozoa count, supplementation of S. saponaria fruits is a beneficial way to improve ruminal VFA profile, microbial efficiency, and duodenal flow of microbial protein in sheep fed tropical grass-alone or grass-legume diets.[Abstract] [Full Text] [Related] [New Search]