These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hydrodynamic dispersion due to combined pressure-driven and electroosmotic flow through microchannels with a thin double layer.
    Author: Zholkovskij EK, Masliyah JH.
    Journal: Anal Chem; 2004 May 15; 76(10):2708-18. PubMed ID: 15144179.
    Abstract:
    The hydrodynamic dispersion of a nonadsorbed and nonelectrolyte solute is considered for the case of a flow driven through a straight microchannel by pressure and electric potential differences. The analysis is conducted using a thin double layer approximation developed in the previous paper (Zholkovskij, E. K.; Masliyah, J. H.; Czarnecki, J. Anal. Chem. 2003, 75, 901-909). On the basis of this approach, an expression is derived to address the dispersion coefficient for arbitrary electrokinetic potential, electrolyte type, and cross-section geometry. In the derived expression, the influence of cross-section geometry manifests itself through the channel hydrodynamic radius and through three dimensionless geometrical factors. The procedure for obtaining the geometrical factors is presented for an arbitrary cross-section geometry. The geometrical factors are evaluated for several examples of cross section: (i) unbounded parallel planes; (ii) circle; (iii) annulus; (iv) ellipse; (v) rectangle. The dependency of the dispersion coefficient on different parameters is discussed. It is shown that the dependencies are substantially affected by the cross-section geometry, electrolyte type, and electrokinetic potential.
    [Abstract] [Full Text] [Related] [New Search]