These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tracheal length changes during zebra finch song and their possible role in upper vocal tract filtering. Author: Daley M, Goller F. Journal: J Neurobiol; 2004 Jun; 59(3):319-30. PubMed ID: 15146548. Abstract: Sounds produced in the avian vocal organ may be modified by filter properties of the upper vocal tract. Possible mechanisms to actively control filter characteristics include movements of the beak, tongue, and larynx and adjustments of tracheal length. We investigated whether length changes of the trachea are a likely mechanism for adjusting upper vocal tract filter properties during song in the zebra finch (Taeniopygia guttata). Tracheal length was monitored at the basal end using sonomicrometry and was recorded together with subsyringeal air sac pressure and acoustic output. Tracheal shortening occurred at the onset of song bouts, and during each motif the tracheal length decreased during expiratory pressure pulses and increased during the short inspirations. A bilateral tracheal syringeal nerve cut confirmed that the initial shortening at the onset of the song bout is an active shortening of the trachea (i.e., mediated by syringeal muscle activity). The modulation of length during the motif was not affected by the denervation and is most likely driven by the pressurization of the interclavicular air sac. The absolute length change during the motif was small (<0.2 mm) and not clearly related to acoustic features of the song. For example, some high-frequency syllables, which are generated during inspiration, were accompanied by tracheal elongation. Because this elongation shifts tube resonances to lower frequencies, it is inconsistent with an active adjustment of length to enhance high frequency sounds. The small magnitude and inconsistent nature of dynamic tracheal length changes during song make it unlikely that they significantly affect vocal tract filter properties if the trachea is modeled as a rigid tube.[Abstract] [Full Text] [Related] [New Search]