These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of an ovine glucocorticoid receptor cDNA and developmental changes in its mRNA levels in the fetal sheep hypothalamus, pituitary gland and adrenal. Author: Yang K, Hammond GL, Challis JR. Journal: J Mol Endocrinol; 1992 Apr; 8(2):173-80. PubMed ID: 1515021. Abstract: Fetal sheep tissues possess glucocorticoid receptors (GR), and these change in number during the last two-thirds of gestation. There is, however, no information about developmental changes in tissue GR mRNA levels which might account for alterations in fetal GR content. We have therefore cloned and sequenced a 942 bp GR cDNA from a sheep liver cDNA library, and used it to study the relative abundance of GR mRNA in fetal and neonatal sheep tissues. Analysis of the cDNA revealed a partial sequence of the ovine GR which displayed over 80% identity with residues 143-453 in human GR and 163-472 in rat GR. Furthermore, the first zinc finger motif in these receptors was perfectly conserved among species. The relative abundance of GR mRNA was studied in hypothalami, anterior pituitary glands and adrenals in fetuses at days 60-70, 100-110, 125-130 and at term (approximately 145 days), and in newborn lambs. Total RNA extracts (20 micrograms) were analysed by Northern blot analysis. A single 5.6 kb transcript was detected in all three fetal tissues, and its relative abundance did not change significantly throughout gestation. However, in newborn lambs, levels of GR mRNA increased significantly in the hypothalamus and pituitary gland but decreased to undetectable levels in the adrenal. These tissue-specific changes in the relative abundance of GR mRNA did not correlate with alterations in GR content in fetal tissues, which suggests that the latter may reflect alterations in GR mRNA translation, subsequent modifications and/or GR turnover. In addition, the pattern of developmental changes in GR mRNA content of the adrenal differs from that of the hypothalamus and pituitary gland in neonatal lambs, and indicates that tissue-specific factors may influence GR gene expression in neonatal sheep.[Abstract] [Full Text] [Related] [New Search]