These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Applied environmental stresses to enhance the levels of polyphenolics in leaves of hawthorn plants.
    Author: Kirakosyan A, Kaufman P, Warber S, Zick S, Aaronson K, Bolling S, Chul Chang S.
    Journal: Physiol Plant; 2004 Jun; 121(2):182-186. PubMed ID: 15153184.
    Abstract:
    In this investigation, two species of Crataegus (hawthorn) were chosen because their polyphenolic constituents have recently received greater attention for the treatment of patients with severe heart disease. One-year-old plants of hawthorn (Crataegus laevigata and C. monogyna) were subjected to water-deficit (continuous water deprivation), cold (4 degrees C), flooding (immersion of roots of plants in water) or herbivory (leaf removal) stress treatments (each of 10 days duration) in order to assess their effects on levels of polyphenolics, namely (-)-epicatechin, catechin, chlorogenic acid, vitexin, vitexin-2"-O-rhamnoside, acetylvitexin-2"-O-rhamnoside, hyperoside, quercetin, and rutin in the leaves. The working hypothesis followed is that one or more of these stress treatment will elicit increases in the levels of these polyphenolics. Cold stress causes increases in levels of vitexin-2"-O-rhamnoside, acetylvitexin-2"-O-rhamnoside, hyperoside, and quercetin in both Crataegus species. Water-deficit stress increased the productivity of chlorogenic acid, catechin, and (-)-epicatechin in both hawthorn species. Flooding and herbivory caused no net increases, and in some cases, decreases in levels of polyphenolics. These studies indicate that either water-deficit stress or cold stress treatments, or a combination of the two, can be used to enhance the levels of desired polyphenolics in the leaves of these two hawthorn species in a photobioreactor system. These results may have significance for hawthorn in adapting to water-deficit or cold stress and are important considerations for the use of hawthorn in the treatment of heart disease in humans.
    [Abstract] [Full Text] [Related] [New Search]