These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Isolation and selection of ionophore-tolerant Eimeria precocious lines: E. tenella, E. maxima and E. acervulina. Author: Li GQ, Kanu S, Xiang FY, Xiao SM, Zhang L, Chen HW, Ye HJ. Journal: Vet Parasitol; 2004 Feb 06; 119(4):261-76. PubMed ID: 15154593. Abstract: Eimeria parasites were isolated from Nanhai Guangdong province (southern China) and studied in chickens in wire cages to evaluate their drug resistance against commonly used ionophores: monensin (100 mg/kg of feed), lasolacid (90 mg/kg), salinomycin (60 mg/kg), maduramicin (5 mg/kg) and semduramicin (25 mg/kg). Chinese Yellow Broiler Chickens were infected with 40,000 crude sporulated Eimeria oocysts at 15 days of age and prophylactic medication commenced a day prior to infection. Drug resistance was assessed for each ionophore drug by calculating the anticoccidial index (ACI) and percentage optimum anticoccidial activity (POAA) based on relative weight gain, rate of oocyst production and lesion values. Results revealed that Nanhai Eimeria oocysts comprising of E. tenella, E. maxima and E. acervulina, were resistant to monensin, sensitive to both salinomycin and lasolacid and partially sensitive to maduramicin and semduramicin. By selection for early development of oocysts during passage through chickens, the prepatent time of E. tenella, E. maxima and E. acervulina were reduced by 49, 36 and 22 h, respectively. The precocious lines are less pathogenic than the parent strains from which they were selected and conferred a satisfactory protection for chickens against coccidiosis. These ionophore-tolerant precocious lines could have wider applications in the development of anticoccidial vaccines for sustainable control of coccidiosis.[Abstract] [Full Text] [Related] [New Search]