These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of a novel two-component system in Streptococcus gordonii V288 involved in biofilm formation.
    Author: Zhang Y, Lei Y, Khammanivong A, Herzberg MC.
    Journal: Infect Immun; 2004 Jun; 72(6):3489-94. PubMed ID: 15155656.
    Abstract:
    Streptococcus gordonii is a pioneer colonizer of the teeth, contributing to the initiation of the oral biofilm called dental plaque. To identify genes that may be important in biofilm formation, a plasmid integration library of S. gordonii V288 was used. After screening for in vitro biofilm formation on polystyrene, a putative biofilm-defective mutant was isolated. In this mutant, pAK36 was inserted into a locus encoding a novel two-component system (bfr [biofilm formation related]) with two cotranscribed genes that form an operon. bfrA encodes a putative response regulator, while bfrB encodes a receptor histidine kinase. The bfr mutant and wild-type strain V288 showed similar growth rates in Todd-Hewitt broth (THB). A bfr-cat fusion strain was constructed. During growth in THB, the reporter activity (chloramphenicol acetyltransferase) was first detected in mid-log phase and reached a maximum in stationary phase, suggesting that transcription of bfr was growth stage dependent. After being harvested from THB, the bfr mutant adhered less effectively than did wild-type strain V288 to saliva-coated hydroxyapatite (sHA). To simulate pioneer colonization of teeth, S. gordonii V288 was incubated with sHA for 4 h in THB with 10% saliva to develop biofilms. RNA was isolated, and expression of bfrAB was estimated. In comparison to that of cells grown in suspension (free-growing cells), bfr mRNA expression by sessile cells on sHA was 1.8-fold greater and that by surrounding planktonic cells was 3.5-fold greater. Therefore, bfrAB is a novel two-component system regulated in association with S. gordonii biofilm formation in vitro.
    [Abstract] [Full Text] [Related] [New Search]