These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genotoxicity of motorcycle exhaust particles in vivo and in vitro.
    Author: Cheng YW, Lee WW, Li CH, Lee CC, Kang JJ.
    Journal: Toxicol Sci; 2004 Sep; 81(1):103-11. PubMed ID: 15159523.
    Abstract:
    We studied the genotoxic potency of motorcycle exhaust particles (MEP) by using a bacterial reversion assay and chromosome aberration and micronucleus tests. In the bacterial reversion assay (Ames test), MEP concentration-dependently increased TA98, TA100, and TA102 revertants in the presence of metabolic-activating enzymes. In the chromosome aberration test, MEP concentration-dependently increased abnormal structural chromosomes in CHO-K1 cells both with and without S9. Pretreatment with antioxidants (alpha-tocopherol, ascorbate, catalase, and NAC) showed varying degrees of inhibitory effect on the MEP-induced mutagenic effect and chromosome structural abnormalities. In the in vivo micronucleus test, MEP dose-dependently induced micronucleus formation in peripheral red blood cells after 24 and 48 h of treatment. The increase of micronucleated reticulocytes induced by MEP was inhibited by pretreatment with alpha-tocopherol and ascorbate. The fluorescence intensity of DCFH-DA-loaded CHO-K1 cells was increased upon the addition of MEP. Our data suggest that MEP can induce genotoxicity through a reactive oxygen species-(ROS-) dependent pathway, which can be augmented by metabolic activation. Alpha-tocopherol, ascorbate, catalase, and NAC can inhibit MEP-induced genotoxicity, indicating that ROS might be involved in this effect.
    [Abstract] [Full Text] [Related] [New Search]