These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glycoprotein hormone assembly in the endoplasmic reticulum: II. Multiple roles of a redox sensitive beta-subunit disulfide switch.
    Author: Xing Y, Myers RV, Cao D, Lin W, Jiang M, Bernard MP, Moyle WR.
    Journal: J Biol Chem; 2004 Aug 20; 279(34):35437-48. PubMed ID: 15161903.
    Abstract:
    All three human glycoprotein hormone heterodimers are assembled in the endoplasmic reticulum by threading the glycosylated end of alpha-subunit loop two (alpha2) beneath a disulfide "latched" strand of the beta-subunit known as the "seatbelt." This remarkable event occurs efficiently even though the seatbelt effectively blocks the reverse process, thereby stabilizing each heterodimer. Studies described here show that assembly is facilitated by the formation, disruption, and reformation of a loop within the seatbelt that is stabilized by the most easily reduced disulfide in the free beta-subunit. We refer to this disulfide as the "tensor" because it shortens the seatbelt, thereby securing the heterodimer. Formation of the tensor disulfide appears to precede and facilitate seatbelt latching in most human choriogonadotropin beta-subunit molecules. Subsequent disruption of the tensor disulfide elongates the seatbelt, thereby increasing the space beneath the seatbelt and the beta-subunit core. This permits the formation of hydrogen bonds between backbone atoms of the beta-subunit cystine knot and the tensor loop with backbone atoms in loop alpha2, a process that causes the glycosylated end of loop alpha2 to be threaded between the seatbelt and the beta-subunit core. Contacts between the tensor loop and loop alpha2 promote reformation of the tensor disulfide, which explains why it is more stable in the heterodimer than in the uncombined beta-subunit. These findings unravel the puzzling nature of how a threading mechanism can be used in the endoplasmic reticulum to assemble glycoprotein hormones that have essential roles in vertebrate reproduction and thyroid function.
    [Abstract] [Full Text] [Related] [New Search]