These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition by copper(II) binding of hepatocyte growth factor (HGF) interaction with its receptor Met and blockade of HGF/Met function. Author: Wright TG, Tsai J, Jia Z, Elliott BE. Journal: J Biol Chem; 2004 Jul 30; 279(31):32499-506. PubMed ID: 15161915. Abstract: Overexpression of hepatocyte growth factor (HGF) and its receptor Met often occurs in carcinoma cells, leading to establishment of an HGF/Met autocrine loop. Therefore, disruption of the HGF/Met autocrine loop may lead to down-regulation of tumorigenesis. To study the HGF/Met interaction, we have developed a cell-free system to detect HGF binding to a Met fusion protein, Met-IgG, using a modified enzyme-linked immunosorbent assay methodology. Since we previously showed that HGF can be purified by copper(II) affinity chromatography, we further explored the effect of copper(II) on the HGF/Met interaction. The divalent metal cations copper(II) and zinc(II) significantly inhibited HGF binding to immobilized Met-IgG with IC(50) values of 230-270 microM, respectively, whereas manganese(II) and magnesium(II) were less inhibitory with 20-60-fold higher IC(50) values. Incubation of 1 mM copper(II) with HGF resulted in nondenaturing and denaturing gel-mobility shifts, indicating that copper(II) binds directly to HGF. This interaction occurs at the N terminus of HGF, as incubation of 1 mM copper(II) with both HGF and the HGF derivative NK1 yielded similar results on SDS-PAGE. HGF-induced activation of Met and cell scattering were inhibited upon addition of HGF in the presence of 1 mM and 500 microM copper(II), respectively. Chemical protonation with diethyl pyrocarbonate of HGF histidine residues impeded the ability of 500 microM copper(II) to inhibit the binding of HGF to immobilized Met-IgG. Based on the NK1 domain structure, we propose that copper(II) may interact with HGF via the histidine residues in either N-terminal or kringle domains. The inhibition of HGF/Met interaction and subsequent downstream cellular functions may be through direct interference by copper(II), such as a change in charge or an induced local conformational change. This putative copper(II) binding domain may be the basis for developing potential inhibitors of HGF/Met binding and downstream functions and could lead to novel strategies for anti-cancer treatment.[Abstract] [Full Text] [Related] [New Search]