These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: G2 chromatid damage and repair kinetics in normal human fibroblast cells exposed to low- or high-LET radiation. Author: Kawata T, Ito H, Uno T, Saito M, Yamamoto S, Furusawa Y, Durante M, George K, Wu H, Cucinotta FA. Journal: Cytogenet Genome Res; 2004; 104(1-4):211-5. PubMed ID: 15162040. Abstract: Radiation-induced chromosome damage can be measured in interphase using the Premature Chromosome Condensation (PCC) technique. With the introduction of a new PCC technique using the potent phosphatase inhibitor calyculin-A, chromosomes can be condensed within five minutes, and it is now possible to examine the early damage induced by radiation. Using this method, it has been shown that high-LET radiation induces a higher frequency of chromatid breaks and a much higher frequency of isochromatid breaks than low-LET radiation. The kinetics of chromatid break rejoining consists of two exponential components representing a rapid and a slow time constant, which appears to be similar for low- and high-LET radiations. However, after high-LET radiation exposures, the rejoining process for isochromatid breaks influences the repair kinetics of chromatid-type breaks, and this plays an important role in the assessment of chromatid break rejoining in the G2 phase of the cell cycle.[Abstract] [Full Text] [Related] [New Search]