These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional interaction between extracellular sodium, potassium and inactivation gating in HERG channels. Author: Mullins FM, Stepanovic SZ, Gillani NB, George AL, Balser JR. Journal: J Physiol; 2004 Aug 01; 558(Pt 3):729-44. PubMed ID: 15169846. Abstract: We have studied the interaction between extracellular K(+) (K(+)(o)) and extracellular Na(+) (Na(+)(o)) in human ether-à-go-go related gene (HERG)-encoded K(+) channels expressed in Chinese hamster ovary (CHO-K1) cells, using the whole-cell voltage clamp technique. Prior studies indicate that Na(+)(o) potently inhibits HERG current (IC(50) 3 mm) by binding to an outer pore site, and also speeds recovery from inactivation. In this study, we sought to explore the relationship between the Na(+)(o) effect on recovery and Na(+)(o) inhibition of HERG current, and to determine whether inactivation gating plays a critical role in Na(+)(o) inhibition of HERG current. Na(+)(o) concentration-response relationships for current inhibition and speeding of recovery were different, with Na(+)(o) less potent at speeding recovery. Na(+)(o) inhibition of HERG current was relieved by physiological [K(+)](o), while Na(+)(o) speeded recovery from inactivation similarly in the absence or presence of physiological [K(+)](o). To examine the link between Na(+)(o) block and inactivation using an independent approach, we studied hyperpolarization-activated currents uncoupled from inactivation in the S4-S5 linker mutant D540K. Depolarization-activated D540K currents were inhibited by Na(+)(o), while hyperpolarization-activated currents were augmented by Na(+)(o). This result reveals a direct link between Na(+)(o) inhibition and a depolarization-induced conformational change, most likely inactivation. We attempted to simulate the disparate concentration-response relationships for the two effects of Na(+)(o) using a kinetic model that included Na(+)(o) site(s) affected by permeation and gating. While a model with only a single dynamic Na(+)(o) site was inadequate, a model with two distinct Na(+)(o) sites was sufficient to reproduce the data.[Abstract] [Full Text] [Related] [New Search]