These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ablation of the CLP-1 gene leads to down-regulation of the HAND1 gene and abnormality of the left ventricle of the heart and fetal death.
    Author: Huang F, Wagner M, Siddiqui MA.
    Journal: Mech Dev; 2004 Jun; 121(6):559-72. PubMed ID: 15172687.
    Abstract:
    We have recently reported that cardiac lineage protein-1 (CLP-1), a nuclear protein with an acidic region that constitutes a potential protein-protein interaction domain, regulates transcription of the cardiac myosin light chain-2v (MLC-2v) gene promoter in a manner consistent with its being a transcriptional co-activator or regulator. To test the postulate that CLP-1 is a regulator of cardiac genes we ablated the CLP-1 gene in mice. Past embryonic day (E)16.5, CLP-1 null alleles did not show Mendelian inheritance suggesting that absence of CLP-1 was lethal in late fetal stages. CLP-1 (-/-) fetal hearts exhibited a reduced left ventricular chamber with thickened myocardial walls, features suggestive of cardiac hypertrophy. Electron microscopic analysis of E16.5 CLP-1 (-/-) ventricular myocardium showed a marked decline in cell density and altered nuclear and myofibril morphologies similar to that seen in animal models of hypertrophic heart. Analysis of contractile and non-contractile protein genes known to be re-expressed during cardiac hypertrophy showed them to have higher expression levels in CLP-1 (-/-) hearts thereby confirming the hypertrophic phenotype at the molecular level. Analysis of cardiac development genes showed that expression of the HAND1 transcription factor, a gene involved in patterning of the heart tube and down-regulated in hypertrophic hearts, was also significantly reduced in CLP-1 (-/-) fetal hearts. CLP-1 and HAND1 have similar expression patterns in the developing heart ventricles. These data suggest that CLP-1 and the HAND transcription factors may be part of a genetic program critical to proper heart development, perturbation of which can lead to cardiomyopathy.
    [Abstract] [Full Text] [Related] [New Search]