These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effect of maternal hypothermic cardiopulmonary bypass on fetal lamb temperature, hemodynamics, oxygenation, and acid-base balance. Author: Pardi G, Ferrari MM, Iorio F, Acocella F, Boero V, Berlanda N, Monaco A, Reato C, Santoro F, Cetin I. Journal: J Thorac Cardiovasc Surg; 2004 Jun; 127(6):1728-34. PubMed ID: 15173730. Abstract: OBJECTIVE: To evaluate fetal-maternal temperature relationship and fetal cardiovascular and metabolic response during maternal hypothermic cardiopulmonary bypass in pregnant ewes. METHODS: Cardiopulmonary bypass was instituted in 9 pregnant ewes, reaching 2 different levels of maternal hypothermia: 24 degrees C to 20 degrees C (deep hypothermia) in group A (5 cases) and less than 20 degrees C (very deep hypothermia) in group B (4 cases). Hypothermic levels were maintained for 20 minutes, then the rewarming phase was started. Fetal and maternal temperature, blood pressure, heart rate, electrocardiogram, blood gases, and acid-base balance were evaluated at different levels of hypothermia and during recovery. RESULTS: Fetal survival was related to maternal hypothermia: all group A fetuses survived, while 2 of 4 fetuses of group B in which maternal temperature was lowered below 18 degrees C died in a very deep acidotic and hypoxic status. Maternal temperature was always lower than fetal temperature during cooling; during rewarming the gradient was inverted. The start of cardiopulmonary bypass and cooling was associated with transient fetal tachycardia and hypertension; then, both fetal heart rate and blood pressure progressively decreased. The reduction of fetal heart rate was of 7 beats per minute for each degree of fetal cooling. Deep maternal hypothermia was associated with fetal alkalosis and reduction of Po(2). Very deep hypothermia, in particular below 18 degrees C, caused irreversible fetal acidosis and hypoxia. CONCLUSIONS: Deep maternal hypothermic cardiopulmonary bypass was associated with reversible modifications in fetal cardiovascular parameters, blood gases, and acid-base balance and therefore with fetal survival. On the contrary, fetuses did not survive to a very deep hypothermia below 18 degrees C.[Abstract] [Full Text] [Related] [New Search]