These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of anticholinergic drugs selective for muscarinic receptor subtypes on prepulse inhibition in mice.
    Author: Ukai M, Okuda A, Mamiya T.
    Journal: Eur J Pharmacol; 2004 May 25; 492(2-3):183-7. PubMed ID: 15178363.
    Abstract:
    The effects of anticholinergic drugs selective for muscarinic receptor subtypes on prepulse inhibition of acoustic startle response were determined in mice. The prepulse inhibition is associated with sensorimotor information processing in the brain. The anticholinergic agent scopolamine (0.3 mg/kg, s.c.) significantly attenuated prepulse inhibition, while the drug (1-10 mg/kg, s.c.) had no effects on startle amplitude as an indicator of startle response. The muscarinic M(1) receptor antagonist pirenzepine (0.1-10 microg/mouse, i.c.v.) and the muscarinic M(2) receptor antagonist AF-DX116 (11-[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one) (0.1-10 microg/mouse, i.c.v.) had no effects on prepulse inhibition or startle amplitude. The muscarinic M(3) receptor antagonist 4-DAMP (1,1-dimethyl-4-diphenylacetoxy-piperidinium iodide) (30 microg/mouse, i.c.v.) and the muscarinic M(4) receptor antagonist tropicamide (0.1 microg/mouse, i.c.v.) significantly attenuated prepulse inhibition, while tropicamide (0.01 microg/mouse, i.c.v.) but not 4-DAMP (10 and 30 microg/mouse, i.c.v.) produced a significant increase in startle amplitude. These results suggest that the blockade of muscarinic M(3) and M(4) receptors leads to the disruption of prepulse inhibition.
    [Abstract] [Full Text] [Related] [New Search]