These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nox3 regulation by NOXO1, p47phox, and p67phox.
    Author: Cheng G, Ritsick D, Lambeth JD.
    Journal: J Biol Chem; 2004 Aug 13; 279(33):34250-5. PubMed ID: 15181005.
    Abstract:
    gp91(phox) (Nox2), the catalytic subunit of the superoxide-generating respiratory burst oxidase, is regulated by subunits p47(phox) and p67(phox). Nox1, a homolog of gp91(phox), is regulated by NOXO1 and NOXA1, homologs of p47(phox) and p67(phox), respectively. For both Nox1 and gp91(phox), an organizer protein (NOXO1 or p47(phox)) cooperates with an activator protein (NOXA1 or p67(phox)) to regulate the catalytic subunit. Herein, we investigate the subunit regulation of Nox3 compared with that of other Nox enzymes. Nox3, like gp91(phox), was activated by p47(phox) plus p67(phox). Whereas gp91(phox) activity required the protein kinase C activator phorbol myristate acetate (PMA), Nox3 activity was already high without PMA, but was further stimulated approximately 30% by PMA. gp91(phox) was also activated by NOXO1/NOXA1 and required PMA for high activity. gp91(phox) regulation required an intact activation domain in the activator protein, as neither p67(phox)(V204A) nor NOXA1(V205A) were effective. In contrast, p67(phox)(V204A) was effective (along with p47(phox)) in activating Nox3. Unexpectedly, Nox3 was strongly activated by NOXO1 in the absence of NOXA1 or p67(phox). Nox3 activity was regulated by PMA only when p47(phox) but not NOXO1 was present, consistent with the phosphorylation-regulated autoinhibitory region in p47(phox) but not in NOXO1. Deletion of the autoinhibitory region from p47(phox) rendered this subunit highly active in the absence of PMA toward both gp91(phox) and Nox3, and high activity required an activator subunit. The unique regulation of Nox3 supports a model in which multiple interactions with regulatory subunits stabilize an active conformation of the catalytic subunit.
    [Abstract] [Full Text] [Related] [New Search]