These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Localization of a catalytic intermediate bound to the FeMo-cofactor of nitrogenase. Author: Igarashi RY, Dos Santos PC, Niehaus WG, Dance IG, Dean DR, Seefeldt LC. Journal: J Biol Chem; 2004 Aug 13; 279(33):34770-5. PubMed ID: 15181010. Abstract: Nitrogenase catalyzes the biological reduction of N(2) to ammonia (nitrogen fixation) as well as the reduction of a number of alternative substrates, including acetylene (HC identical with CH) to ethylene (H2C=CH2). It is known that the metallocluster FeMo-cofactor located within the nitrogenase MoFe protein component provides the site of substrate reduction, but the exact site where substrates bind and are reduced on the FeMo-cofactor remains unknown. We have recently shown that the alpha-70 residue of the MoFe protein plays a significant role in defining substrate access to the active site; alpha-70 approaches one face of the FeMo-cofactor, and when valine is substituted by alanine at this position, the substituted nitrogenase is able to accommodate a reduction of the larger alkyne propargyl alcohol (HC identical with CCH(2)OH, propargyl-OH). During this reduction, a substrate-derived intermediate can be trapped on the FeMo-cofactor resulting in an S = 1/2 spin system with a novel electron paramagnetic resonance spectrum. In the present work, trapping of the propargyl-OH-derived or propargyl amine (HC identical with CCH(2)NH(2), propargyl-NH(2))-derived intermediates is shown to be dependent on pH and the presence of histidine at position alpha-195. It is concluded that these catalytic intermediates are stabilized and thereby trapped by H-bonding interactions between either the-OH group or the-NH(3)(+)group and the imidazole epsilon-NH of alpha-195(His). Thus, for the first time it is possible to establish the location of a bound substrate-derived intermediate on the FeMo-cofactor. Refinement of the binding mode and site was accomplished by the use of density functional and force field calculations pointing to an eta(2) coordination at Fe-6 of the FeMo-cofactor.[Abstract] [Full Text] [Related] [New Search]