These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effects of brain-derived neurotrophic factor (BDNF) administration on kindling induction, Trk expression and seizure-related morphological changes.
    Author: Xu B, Michalski B, Racine RJ, Fahnestock M.
    Journal: Neuroscience; 2004; 126(3):521-31. PubMed ID: 15183502.
    Abstract:
    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family that mediates synaptic plasticity and excitability in the CNS. Recent evidence has shown that increased BDNF levels can lead to hyperexcitability and epileptiform activities, while suppression of BDNF function in transgenic mice or by antagonist administration retards the development of seizures. However, several groups, including our own, have reported that increasing BDNF levels by continuous intrahippocampal infusion inhibits epileptogenesis. It is possible that the continuous administration of BDNF produces a down-regulation of its high-affinity TrkB receptor, leading to a decrease of neuronal responsiveness to BDNF. If so, then animals should respond differently to bolus injections of BDNF, which presumably do not alter Trk expression, compared with continuous infusion. To test this hypothesis, we compared the effects of intrahippocampal BDNF continuous infusion and bolus injections on kindling induction. We showed that continuous infusion of BDNF inhibited the development of behavioral seizures and decreased the level of phosphorylated Trks or TrkB receptors. In contrast, multiple bolus microinjections of BDNF accelerated kindling development and did not affect the level of phosphorylated Trks or TrkB receptors. Our results indicate that different administration protocols yield opposite effects of BDNF on neuronal excitability, epileptogenesis and Trk expression. Unlike nerve growth factor and neurotrophin-3, which affect mossy fiber sprouting, we found that BDNF administration had no effect on the mossy fiber system in naive or kindled rats. Such results suggest that the effects of BDNF on epileptogenesis are not modulated by its effect on sprouting, but rather by its effects on excitability.
    [Abstract] [Full Text] [Related] [New Search]