These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Selective inhibition of STAT3 induces apoptosis and G(1) cell cycle arrest in ALK-positive anaplastic large cell lymphoma.
    Author: Amin HM, McDonnell TJ, Ma Y, Lin Q, Fujio Y, Kunisada K, Leventaki V, Das P, Rassidakis GZ, Cutler C, Medeiros LJ, Lai R.
    Journal: Oncogene; 2004 Jul 15; 23(32):5426-34. PubMed ID: 15184887.
    Abstract:
    Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) is an aberrant fusion gene product expressed in a subset of cases of anaplastic large cell lymphoma (ALCL). It has been shown that NPM-ALK binds to and activates signal transducer and activator of transcription 3 (STAT3) in vitro, and that STAT3 is constitutively active in ALK(+) ALCL cell lines and tumors. In view of the oncogenic potential of STAT3, we further examined its biological significance in ALCL using two ALK(+) ALCL cell lines (Karpas 299 and SU-DHL-1) and an adenoviral vector that carries dominant-negative STAT3 (AdSTAT3DN). Infection by AdSTAT3DN led to the expression of STAT3DN in both ALK(+) ALCL cell lines at a similar efficiency. Subcellular fractionation studies showed that a significant proportion of the expressed STAT3DN protein translocated to the nucleus, despite the fact that STAT3DN has a mutation at residue 705(tyrosine --> phenylalanine), a site that is believed to be crucial for STAT3 activation and nuclear translocation. Introduction of STAT3DN induced apoptosis and G(1) cell cycle arrest. Western blot studies showed that expression of STAT3DN resulted in caspase-3 cleavage, downregulation of Bcl-2, Bcl-xL, cyclin D3, survivin, Mcl-1, c-Myc and suppressor of cytokine signaling 3. These results support the concept that STAT3 activation is pathogenetically important in ALCL cells by deregulating the expression of multiple target proteins that are involved in the control of apoptosis and cell cycle progression.
    [Abstract] [Full Text] [Related] [New Search]