These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Resolution of the membrane moiety of the H+-ATPase complex into two kinds of subunits. Author: Sone N, Yoshida M, Hirata H, Kagawa Y. Journal: Proc Natl Acad Sci U S A; 1978 Sep; 75(9):4219-23. PubMed ID: 151864. Abstract: The H+-translocating ATPase complex from the thermophilic bacterium PS3 (TF0-F1) is composed of a water-soluble part with ATP-hydrolyzing activity (TF1) and a membrane moiety with H+-conducting activity (TF0). TF0 was obtained by treating TF0-F1 with urea and removing contaminations on a carboxymethyl-cellulose column. This TF0 contained only two kinds of subunits, band 6 protein (13,500 daltons) and band 8 protein (5400 daltons), and it was active in H+ conduction and TF1 binding when reconstituted into proteoliposomes (TF0 vesicles). The binding of TF1 to TF0 present in vesicles restored energy-transducing activities, such as ATP-32Pi exchange, dicyclohexylcarbodiimide-sensitive ATPase, and ATP-dependent enhancement of 8-anilinonaphthalene-1-sulfonate fluorescence. Treatments such as protease digestion and chemical modification with acetic anhydride, succinic anhydride, or diazobenzenesulfonic acid destroyed the TF1-binding activity, which was caused by band 6 protein. Band 8 protein was a proteolipid that reacted specifically with dicylcohexyl-carbodiimide and seemed to play a central role in H+ conduction through the membrane.[Abstract] [Full Text] [Related] [New Search]