These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 15-deoxy-Delta12,14-prostaglandin J2 inhibits glucocorticoid binding and signaling in macrophages through a peroxisome proliferator-activated receptor gamma-independent process. Author: Cheron A, Peltier J, Perez J, Bellocq A, Fouqueray B, Baud L. Journal: J Immunol; 2004 Jun 15; 172(12):7677-83. PubMed ID: 15187150. Abstract: 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) is involved in the control of inflammatory reaction. We tested the hypothesis that 15d-PGJ(2) would exert this control in part by modulating the sensitivity of inflammatory cells to glucocorticoids. Human U937cells and mouse RAW 264.7 cells were exposed to 15d-PGJ(2), and binding experiments were performed with [(3)H]dexamethasone as a glucocorticoid receptor (GR) ligand. 15d-PGJ(2) caused a transient and concentration-dependent decrease in [(3)H]dexamethasone-specific binding to either cells through a decrease in the number of GR per cell without significant modification of the K(d) value. These changes were related to functional alteration of the GR rather than to a decrease in GR protein. They did not require the engagement of peroxisome proliferator-activated receptor gamma (PPARgamma), because the response to 15d-PGJ(2) was neither mimicked by the PPARgamma agonist ciglitazone nor prevented by the PPARgamma antagonist bisphenol A diglycidyl ether. 15d-PGJ(2) altered GR possibly through the interaction of its cyclopentenone ring with GR cysteine residues because the cyclopentenone ring per se could mimic the effect of 15d-PGJ(2), and modification of GR cysteine residues with methyl methanethiosulfonate suppressed the response to 15d-PGJ(2). Finally, 15d-PGJ(2)-induced decreases in glucocorticoid binding to GR resulted in parallel decreases in the ability of GR to activate the transcription of a glucocorticoid-inducible reporter gene and to reduce the expression of monocyte chemoattractant protein-1. Together these data suggest that 15d-PGJ(2) limits glucocorticoid binding and signaling in monocytes/macrophages through a PPARgamma-independent and cyclopentenone-dependent mechanism. It provides a way in which 15d-PGJ(2) would exert proinflammatory activities in addition to its known anti-inflammatory activities.[Abstract] [Full Text] [Related] [New Search]