These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ascertaining the importance of neurons to develop better brain-machine interfaces.
    Author: Sanchez JC, Carmena JM, Lebedev MA, Nicolelis MA, Harris JG, Principe JC.
    Journal: IEEE Trans Biomed Eng; 2004 Jun; 51(6):943-53. PubMed ID: 15188862.
    Abstract:
    In the design of brain-machine interface (BMI) algorithms, the activity of hundreds of chronically recorded neurons is used to reconstruct a variety of kinematic variables. A significant problem introduced with the use of neural ensemble inputs for model building is the explosion in the number of free parameters. Large models not only affect model generalization but also put a computational burden on computing an optimal solution especially when the goal is to implement the BMI in low-power, portable hardware. In this paper, three methods are presented to quantitatively rate the importance of neurons in neural to motor mapping, using single neuron correlation analysis, sensitivity analysis through a vector linear model, and a model-independent cellular directional tuning analysis for comparisons purpose. Although, the rankings are not identical, up to sixty percent of the top 10 ranking cells were in common. This set can then be used to determine a reduced-order model whose performance is similar to that of the ensemble. It is further shown that by pruning the initial ensemble neural input with the ranked importance of cells, a reduced sets of cells (between 40 and 80, depending upon the methods) can be found that exceed the BMI performance levels of the full ensemble.
    [Abstract] [Full Text] [Related] [New Search]