These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Stimulation of replicative DNA synthesis by eukaryotic proteins bound to single-stranded DNA]. Author: Koterov AN, Andrianova EP, Filippovich IV. Journal: Ukr Biokhim Zh (1978); 1992; 64(1):35-41. PubMed ID: 1519344. Abstract: The paper deals with the effect of the single-strand (ss) DNA-binding proteins (SSB-proteins) from the Ehrlich ascites tumor (EAT) cells and from the eggs of silkworm, as well as the mouse serum blood proteins, having preferential affinity to ss DNA, on the DNA replicative synthesis in the EAT cells permeable for the macromolecules, and, for the silkworm proteins and on the DNA replicative synthesis in the nuclei from the eggs of silkworm proteins and on the DNA replicative synthesis in the nuclei from the eggs of silkworm permeable for macromolecules. SSB-proteins of EAT to considerable extent stimulated the DNA synthesis. At the same time, the other proteins (from the silkworm and from the serum) activated the DNA synthesis in the permeable cells to the less extent. It was found that SSB-proteins from the silkworm had a 1.5-13 fold stimulating effect on the DNA replicative synthesis in the homologous system (in the permeable nuclei). If the permeability for the macromolecules of the cells and nuclei treatment with Triton X-100 may be different, it is supposed that the activation of the DNA synthesis by the exogenous proteins depends on the homologous system of the DNA replicative complex. It is possible that the effect of the serum proteins on the DNA synthesis is connected with the masking of the ss regions of DNA which inhibited DNA-polymerase alpha. Perhaps the mechanisms of the activation of the DNA replicative synthesis by the proteins in vitro with the purified DNA polymerase alpha and in vivo are of different nature and are conditioned by homology of the deoxyribonucleoproteins.[Abstract] [Full Text] [Related] [New Search]