These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The usefulness of molecular techniques to assess the presence of Aeromonas spp. harboring virulence markers in foods.
    Author: Bin Kingombe CI, Huys G, Howald D, Luthi E, Swings J, Jemmi T.
    Journal: Int J Food Microbiol; 2004 Jul 15; 94(2):113-21. PubMed ID: 15193799.
    Abstract:
    A total of 78 raw and 123 processed and ready-to-eat retail food samples were used to assess the presence of motile Aeromonas spp. harboring virulence genes (cytotoxic enterotoxin and hemolysin genes) using a recently described PCR method in comparison with the conventional cultivation method based on the use of Ampicillin-Dextrin Agar (ADA) medium. With the ADA-based method, 65/201 (32.3%) samples showed presumptive Aeromonas spp. colonies whereas the PCR method revealed the presence of Aeromonas spp. harboring the targeted virulence genes in 51/201 (25.4%) of the tested samples. The rate of contaminated samples and the presence of pathogenic Aeromonas were significantly lower with both methods for processed than in case of raw samples. A polyphasic identification approach including biochemical and molecular techniques was applied to a selection of 34 PCR-positive presumptive Aeromonas isolates. Following fatty acid methyl ester (FAME) analysis and amplified fragment length polymorphism (AFLP) fingerprinting, a total of 33 isolates (97%) could be identified to the DNA hybridization group (HG) level. The majority of these isolates belonged to the species Aeromonas hydrophila HG3 (50%) and Aeromonas veronii biovar sobria (HG8/10) (38%). Molecular characterization of PCR amplicons obtained from these strains by PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) fingerprinting and PCR-Amplicon Sequence Analysis (PCR-ASA) allowed classification of all strains in a known PCR-RFLP and PCR-ASA type. In conclusion, the current findings demonstrate that the combined use of PCR-based virulence marker detection, PCR-RFLP and PCR-ASA offers a rapid, sensitive, and specific system to assess the presence and prevalence of Aeromonas spp. harboring virulence markers in food samples.
    [Abstract] [Full Text] [Related] [New Search]