These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Genomic structure and differential expression of two tandem-arranged GSTZ genes in rice. Author: Tsuchiya T, Takesawa T, Kanzaki H, Nakamura I. Journal: Gene; 2004 Jun 23; 335():141-9. PubMed ID: 15194197. Abstract: Glutathione S-transferases (GSTs) are scavenging enzymes that detoxify cellular xenobiotics and toxins by catalyzing the conjugation of these substrates with a tripeptide glutathione. GSTs are classified depending on gene organization and sequence similarity. The sequence analysis of genomic DNA for zeta class GST (GSTZ) locus in rice indicated that two homologous GSTZ genes lay in a tandem orientation with a short (0.4 kb) intergenic spacer. The upstream OsGSTZ1 and downstream OsGSTZ2 spanned 3.5 and 3.2 kb with nine coding exons, respectively. The transcript of OsGSTZ1 had a long 3' untranslated region (3' UTR) that was mostly encoded by a 10th noncoding exon, whereas OsGSTZ2 mRNA contained a long 5' UTR. Northern blot analysis showed that OsGSTZ1/2 messages were strongly expressed in leaf blades, while transcripts from roots were low level. Because OsGSTZ1/2 messages in leaf tissues were strongly induced only by water treatment, it was difficult to assay for the induction of OsGSTZ1/2 transcripts by various stress treatments. Thus, using rice culture cells, we analyzed the respective responses of OsGSTZ1 and OsGSTZ2 genes against various treatments by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The results showed that OsGSTZ1 was expressed at a level ca. 1000-fold higher than OsGSTZ2 in suspension cells without stress treatment. OsGSTZ1 was expressed constitutively under various stress conditions. In contrast, the expression of OsGSTZ2 gene was strongly enhanced to 30-fold by treatment with jasmonic acid. These observations suggested that the expression of OsGSTZ1 and OsGSTZ2 genes are differentially regulated in the culture cell of rice.[Abstract] [Full Text] [Related] [New Search]