These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular mechanisms in dizocilpine-induced attenuation of development of morphine dependence: an association with cortical Ca2+/calmodulin-dependent signal cascade. Author: Hamdy MM, Noda Y, Miyazaki M, Mamiya T, Nozaki A, Nitta A, Sayed M, Assi AA, Gomaa A, Nabeshima T. Journal: Behav Brain Res; 2004 Jul 09; 152(2):263-70. PubMed ID: 15196794. Abstract: We investigated how dizocilpine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, affects the development of morphine dependence in mice. Co-administration of dizocilpine (0.25 mg/kg) and morphine (10 mg/kg) for 5 days attenuated the development of tolerance to the antinociceptive effects of morphine. The withdrawal manifestation induced by the naloxone-challenge (5 mg/kg) was significantly reduced in mice that were treated with a combination of dizocilpine and morphine, compared to the mice treated with morphine and saline. The present study revealed a significant increase in c-Fos protein expression in the cortex and thalamus of mice showing naloxone-precipitated withdrawal syndrome. The combination of dizocilpine and morphine prevented the increase of c-Fos protein expression in the cortex and thalamus. Interestingly, repeated co-administration of dizocilpine and morphine prevented the withdrawal-induced phosphorylation of Ca2+/calmodulin kinase II (p-CaMK II) in the cortex, but not in the thalamus. Acute dizocilpine treatment prior to the naloxone-challenge and repeated treatment with dizocilpine alone had no effect on analgesia, withdrawal manifestations, p-CaMK II levels or c-Fos protein levels. These results showed that co-administration of dizocilpine and morphine prevented the development of morphine tolerance and dependence and suggested that the preventive effect of dizocilpine results from the regulation of c-Fos protein expression, which is possibly involved in the activation of the Ca2+/calmodulin-dependent signal cascade in the cortex.[Abstract] [Full Text] [Related] [New Search]