These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Determination of the absolute configuration of [3(2)](1,4)barrelenophanedicarbonitrile using concerted time-dependent density functional theory calculations of optical rotation and electronic circular dichroism.
    Author: Stephens PJ, McCann DM, Devlin FJ, Cheeseman JR, Frisch MJ.
    Journal: J Am Chem Soc; 2004 Jun 23; 126(24):7514-21. PubMed ID: 15198598.
    Abstract:
    The technique of time-dependent density functional theory (TDDFT) has very recently been applied to the calculation of both transparent spectral region optical rotations and electronic circular dichroism (CD). Here, we report the concerted application of the new methodologies to the determination of the absolute configuration (AC) of [3(2)](1,4)barrelenophanedicarbonitrile, 1, the first optically active barrelenophane. 1 is conformationally flexible: the two three-carbon bridges of 1 can each exhibit two conformations, leading to three inequivalent conformations of 1: a, b, and c. Conformational structures and energies are predicted using DFT at the B3LYP/6-31G level. Comparison of the calculated structures to structures obtained via X-ray crystallography of (+)-1 shows that (remarkably) all three conformations a-c are simultaneously present in crystalline (+)-1. The sodium D line specific rotations, [alpha](D), and CD spectra of a-c are calculated using TDDFT at the B3LYP/aug-cc-pVDZ level. Comparison of the conformationally averaged specific rotation and CD spectrum to the experimental data of Matsuda-Sentou and Shinmyozu leads to the AC 9S,12S(+)/9R,12R(-). The same AC is obtained both from [alpha](D) and from the CD, strongly supporting its reliability.
    [Abstract] [Full Text] [Related] [New Search]