These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fast-gated intensified charge-coupled device camera to record time-resolved fluorescence spectra of tryptophan.
    Author: Stortelder A, Buijs JB, Bulthuis J, Gooijer C, van der Zwan G.
    Journal: Appl Spectrosc; 2004 Jun; 58(6):705-10. PubMed ID: 15198823.
    Abstract:
    The possibilities of a 200 ps gated intensified charge-coupled device (CCD) camera to record time-resolved fluorescence were explored using the fluorescing amino acid tryptophan and its derivative Nacetyl-tryptophan amide (NATA) as model compounds. The results were compared to complementary data from time-correlated single-photon counting (TCSPC) experiments. If a spectral resolution of 1-2 nm is desired, the fast-gated intensified CCD (ICCD) camera is the method of choice. For a 10(-5) M tryptophan solution, time-resolved emission spectra and intensity decays (measured over 12 ns at 25 ps resolution) could be obtained in typically 10 minutes, giving the well-known lifetimes of 0.5 and 3 ns. In addition, a longer lifetime of 7 ns was found at the red edge of the spectrum. The very short gate time of the ICCD camera allowed us to observe a shift in the emission maximum of tryptophan even within the first nanosecond of decay of the fluorescence emission. As expected from the tryptophan rotamer model, such a shift is not observed in NATA. Using amplitudes obtained by global analysis, decay-associated spectra of these lifetimes were constructed.
    [Abstract] [Full Text] [Related] [New Search]