These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Substrate specificity of human liver neutral alpha-mannosidase.
    Author: al Daher S, De Gasperi R, Daniel P, Hirani S, Warren C, Winchester B.
    Journal: Biochem J; 1992 Aug 15; 286 ( Pt 1)(Pt 1):47-53. PubMed ID: 1520283.
    Abstract:
    The digestion of radiolabelled natural oligosaccharide substrates by human liver neutral alpha-mannosidase has been studied by h.p.l.c. and h.p.t.l.c. The high-mannose oligosaccharides Man9GlcNAc and Man8GlcNAc are hydrolysed by the enzyme by two distinct non-random routes to a common product of composition Man6GlcNAc, which is then slowly converted into a unique Man5GlcNAc oligosaccharide, Man alpha(1----2)Man alpha(1----2)Man alpha(1----3)[Man alpha (1----6)] Man beta(1----4)GlcNAc. These pathways are different from the processing and lysosomal catabolic pathways for these structures. In particular, the alpha(1----2)-linked mannose residues attached to the core alpha(1----3)-linked mannose residue are resistant to hydrolysis. The key processing intermediate, Man alpha(1----3)[Man alpha(1----6)]Man alpha(1----6)[Man alpha(1----3)] Man beta(1----4)GlcNAc, is not produced in the digestion of high-mannose glycans by the neutral alpha-mannosidase, but it is hydrolysed by the enzyme by a non-random route to Man beta(1----4)GlcNAc via the core structure Man alpha(1----3)[Man alpha(1----6)]Man beta(1----4)GlcNAc. In contrast with its ready hydrolysis by lysosomal alpha-mannosidase, the core alpha(1----3)-mannosidic linkage is quite resistant to hydrolysis by neutral alpha-mannosidase. The precise specificity of neutral alpha-mannosidase towards high-mannose oligosaccharides suggests that it has a role in the modification of such structures in the cytosol.
    [Abstract] [Full Text] [Related] [New Search]