These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Factor structure of the human gamma band oscillatory response to visual (contrast) stimulation. Author: Carozzo S, De Carli F, Beelke M, Saturno M, Garbarino S, Martello C, Sannita WG. Journal: Clin Neurophysiol; 2004 Jul; 115(7):1669-76. PubMed ID: 15203068. Abstract: OBJECTIVE: Visual contrast stimulation evokes in man an oscillatory mass response at approximately 20.0-35.0 Hz, consistent with stimulus-dependent synchronous oscillations in multiunit animal recordings from visual cortex, but shorter in duration and phase-locked to stimulus. A factor analysis was applied to characterize the signal structure under stimulus conditions inducing an oscillatory response and to identify possible subcomponents in normal volunteers. METHODS: Contrast stimuli were gratings with a sinusoidal luminance profile (9.0 degrees; 5.0 cycle/degree; 80% contrast; reversal 1.06 Hz). The amplitude spectrum of the signal was computed by Discrete Fourier Transform (DFT) and the oscillatory response was separated from the corresponding visually evoked potential (VEP) by DFT high-pass filter at 19.0 Hz. Nine consecutive waves were identified in all subjects (60 volunteers), with amplitudes/latencies consistent with normative studies. A factor analysis was computed 1- in the frequency domain, on the amplitude values of the signal components (2 Hz resolution), and 2- in the time domain, on the latencies/amplitudes of the averaged VEP and oscillatory responses. RESULTS: (1) Two non-overlapping factors accounted for the approximately 2-20.0 and approximately 20.0-40.0 Hz signal components, with separation of the approximately 20.0-35.0 Hz oscillatory response from low frequency VEPs. (2) Two factors on latencies and one factor on amplitudes (independent of each other and from those of VEPs) accounted for the average approximately 20.0-35.0 Hz oscillatory response. CONCLUSIONS: The factor structure further indicates an oscillatory structure and some independence from conventional VEPs of the human oscillatory response to contrast, with a separation between the oscillatory response early and late waves possibly reflecting functional differences.[Abstract] [Full Text] [Related] [New Search]