These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vitamin C or Vitamin B6 supplementation prevent the oxidative stress and decrease of prostacyclin generation in homocysteinemic rats. Author: Mahfouz MM, Kummerow FA. Journal: Int J Biochem Cell Biol; 2004 Oct; 36(10):1919-32. PubMed ID: 15203107. Abstract: We hypothesize that homocysteinemia causes oxidative stress, decreases the aortic ability to generate prostacyclin and that antioxidants have a protective role. Four groups of eight rats each were fed for 8 weeks the control diet (group A), control diet with folic acid omitted and excess methionine (Me) added to drinking water (group B), diet B + 500 mg/kg of Vitamin C (group C) or diet B + 60 mg/kg Vitamin B6 (group D). The three groups of rats fed folic acid deficient (FD) diets (groups B, C and D) were homocysteinemic as indicated by the significant increase in their serum homocysteine (HC) concentration. Rats fed diet B had oxidative stress as indicated by an increase in serum thiobarbituric acid reactive substances (TBARS) and advanced oxidation protein products (AOPP) and urinary isoprostanes and had a decreased ability of their aortas to generate prostacyclin. Homocysteinemic rats fed a FD diet + Vitamin C (group C) or Vitamin B6 (group D) also had high levels of serum homocysteine but the oxidative stress markers and the ability of their aortas to generate prostacyclin returned to normal. This indicates that the homocysteinemic effect is through an oxidative mechanism and that Vitamin C as a free radical scavenger prevents these effects. Serum Vitamin C and liver glutathione concentrations significantly increased in rats fed excess Vitamin B6 compared to the control or FD rats. This may explain why Vitamin B6 has an antioxidative effect.[Abstract] [Full Text] [Related] [New Search]