These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of a mammalian target of kappaM-conotoxin RIIIK. Author: Ferber M, Al-Sabi A, Stocker M, Olivera BM, Terlau H. Journal: Toxicon; 2004 Jun 15; 43(8):915-21. PubMed ID: 15208025. Abstract: Despite the great variability of the conus peptides characterized until now only relatively few have been identified that interact with K+ channels. kappaM-conotoxin RIIIK (kappaM-RIIIK) is a 24 amino acid peptide from Conus radiatus, which is structurally similar to micro-conotoxin GIIIA, a peptide known to block specifically skeletal muscle Na+ channels. Recently, it has been shown that kappaM-RIIIK does not interact with Na) channels, but inhibits Shaker potassium channels expressed in Xenopus oocytes. It was demonstrated that kappaM-RIIIK binds to the pore region of Shaker channels and a teleost homologue of the Shaker channel TSha1 was identified as a high affinity target of the toxin. In contrast the mammalian Shaker-homologues Kv1.1, Kv1.3, Kv1.4 are not affected by the toxin. In this study the activity of kappaM-RIIIK on other mammalian Kv1 K+ channels expressed in Xenopus oocytes was investigated. We demonstrate that kappaM-conotoxin RIIIK up to 5 microM exhibits no significant effect on Kv1.5 and Kv1.6 mediated currents, but the human Kv1.2 K+ channel is blocked by this peptide. The binding of kappaM-RIIIK to Kv1.2 channels is state dependent with an IC50 for the closed state of about 200 nM and for the open state of about 400 nM at a test potential of 0 mV. kappaM-conotoxin RIIIK is the first conotoxin described to block human Kv1.2 potassium channels.[Abstract] [Full Text] [Related] [New Search]