These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A novel scorpion toxin blocking small conductance Ca2+ activated K+ channel.
    Author: Xu CQ, He LL, Brône B, Martin-Eauclaire MF, Van Kerkhove E, Zhou Z, Chi CW.
    Journal: Toxicon; 2004 Jun 15; 43(8):961-71. PubMed ID: 15208029.
    Abstract:
    Small conductance calcium activated potassium channels (SK) are crucial in the regulation of cell firing frequency in the nervous system and other tissues. In the present work, a novel SK channel blocker, designated BmSKTx1, was purified from the scorpion Buthus martensi Karsh venom. The sequence of the N-terminal 22 amino acid residues was determined by Edman degradation. Using this sequence information, the full-length cDNA and genomic gene of BmSKTx1 were cloned and sequenced. By these analyses, BmSKTx1 was found to be a peptide composed of 31 amino acid residues with three disulfide bonds. It shared little sequence homology with other known scorpion alpha-KTxs but showed close relationship with SK channel blockers in the phylogenetic tree. According to the previous nomenclature, BmSKTx1 was classified as alpha-KTx14.1. We examined the effects of BmSKTx1 on different ion channels of rat adrenal chromaffin cells (RACC) and locust dorsal unpaired median (DUM) neurons. BmSKTx1 selectively inhibited apamin-sensitive SK currents in RACC with Kd of 0.72 microM and Hill coefficient of 2.2. And it had no effect on Na+, Ca2+, Kv, and BK currents in DUM neuron, indicating that BmSKTx1 was a selective SK toxin.
    [Abstract] [Full Text] [Related] [New Search]