These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Positive feedback regulation of PLCgamma1/Ca(2+) signaling by PKCtheta in restimulated T cells via a Tec kinase-dependent pathway. Author: Altman A, Kaminski S, Busuttil V, Droin N, Hu J, Tadevosyan Y, Hipskind RA, Villalba M. Journal: Eur J Immunol; 2004 Jul; 34(7):2001-11. PubMed ID: 15214048. Abstract: PKCtheta plays an essential role in activation of mature T cells. Here, we report that the TCR/CD28-induced tyrosine phosphorylation and activation of PLCgamma1 was significantly impaired in PKCtheta (-/-) primary, restimulated T cells. Consistent with this finding, receptor-induced Ca(2+) mobilization, NF-AT DNA-binding activity and the membrane translocation of PKCalpha, a PLCgamma1-dependent conventional PKC, were also markedly reduced in the same cells. Moreover, a dominant-negative PLCgamma1 mutant blocked the PKCtheta-induced activation of an AP-1 reporter gene in Jurkat and primary cells. Regulation of PLCgamma1 signaling by PKCtheta required the tyrosine kinase Tec since a dominant-negative Tec mutant blocked PKCtheta-induced AP-1 (but not NF-kappaB) activation. In addition, wild-type Tec, but not Itk or Rlk, potently activated AP-1. Furthermore, Tec was found to constitutively associate with PKCtheta, an interaction that like AP-1 activation required the pleckstrin-homology domain of Tec. These findings define a novel PKCtheta-initiated pathway that regulates Ca(2+) signaling and AP-1 activation via Tec and PLCgamma1. Moreover, they identify Tec as a key point downstream of PKCtheta, where TCR- and PKCtheta-induced signaling pathways, leading to AP-1 versus NF-kappaB activation, diverge in T cells.[Abstract] [Full Text] [Related] [New Search]