These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Development of potent bifunctional endomorphin-2 analogues with mixed mu-/delta-opioid agonist and delta-opioid antagonist properties. Author: Fujita Y, Tsuda Y, Li T, Motoyama T, Takahashi M, Shimizu Y, Yokoi T, Sasaki Y, Ambo A, Kita A, Jinsmaa Y, Bryant SD, Lazarus LH, Okada Y. Journal: J Med Chem; 2004 Jul 01; 47(14):3591-9. PubMed ID: 15214786. Abstract: The C terminus of endomorphin-2 (EM-2) analogues (Tyr-Pro-Phe-NH-X) was modified with aromatic, heteroaromatic, or aliphatic groups (X = phenethyl,benzyl, phenyl, naphthyl, pyridyl, quinolyl, isoquinolyl, tert-butyl, cyclohexyl, or adamantyl; 3-18) to study their effect on opioid activity. Only 9 (1-naphthyl), 11 (5-quinolyl), 16 (cyclohexyl), and 18 (2-adamantyl) exhibited mu-opioid receptor affinity in the nanomolar range (K(i) = 2.41-6.59 nM), which, however, was 3- to 10-fold less than the parent peptide. Replacement of Tyr(1) by Dmt (2',6'-dimethyl-l-tyrosine) (19-32) exerted profound effects: (i) acquisition of high mu-opioid receptor affinity (K(i) = 0.11-0.52 nM) except 23 (Ph); (ii) presence of potent functional mu-opioid receptor agonism (IC(50) < 1 nM) for 19 ([Dmt(1)]EM-2), 27 (1-naphthyl), 29 (5-quinolyl), and 32 (5-isolquinolyl); (iii) association of weak delta-opioid antagonist activity (pA(2) = 5.41-7.18) except 19 ([Dmt(1)]EM-2), 20 (H), 27 (1-naphthyl), and in particular 29 (5-quinolyl) with its potent delta-agonism (IC(50) = 0.62 nM, pA(2) = 5.88); (iv) production of antinociception after ic administration of 32 (5-isoquinolyl) in mice, a bioactivity absent in the corresponding Tyr(1) analogue (14); and (v) preferential cis orientation (cis/trans = 3:2 to 7:3) at the Dmt-Pro amide bond, in contrast to the Tyr-Pro amide trans orientation (cis/trans = 1:2 to 1:3). Thus, [Dmt(1)]EM-2 analogues with hydrophobic C-terminal extensions provide model compounds with potent mu-opioid receptor bioactivity and dual functional agonism.[Abstract] [Full Text] [Related] [New Search]