These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Immediate early gene expression associated with induction of brooding behavior in Japanese quail. Author: Ruscio MG, Adkins-Regan E. Journal: Horm Behav; 2004 Jun; 46(1):19-29. PubMed ID: 15215038. Abstract: Certain species can be induced to foster infant or neonatal animals through the process of sensitization. We induced brooding behavior in adult Japanese quail through repeated exposure to foster chicks across five 20-min trials. Brooding behavior was characterized by a bird allowing chicks to approach and remain underneath its wings while assuming a distinctive stationary crouching posture, preening, and feather fluffing. Birds who did not show brooding behavior actively avoided chicks. Among the birds that brooded chicks, females brooded chicks for longer durations compared to males. Brooding females continued a regular daily egg laying pattern; males showed no significant changes in testosterone levels after exposure to chicks. In a second experiment, we measured expression of two immediate early gene (IEG) protein products, ZENK and Fos, to identify the brain regions activated or inhibited by brooding behavior in females. ZENK and Fos expression in brooding or sensitized females (SF) were compared with expression in nonmaternal females with chicks (NMF) and with females without chicks and with blocks as control objects (BL). There was a reduced density of ZENK-like immunoreactive (ZENK-lir) cells in the medial preoptic nucleus (POM) in NMF birds. In SF birds, the density of Fos-like immunoreactive (Fos-lir) cells was elevated in the bed nucleus stria terminalis, medial portion (BSTm), and ectostriatum (E). These experiments begin to define the neural circuitry underlying brooding behavior in Japanese quail, and establish a model for future studies of the neural mechanisms of avian parental behavior.[Abstract] [Full Text] [Related] [New Search]