These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The platelet integrin alpha(IIb) beta(3) imaged by atomic force microscopy on model surfaces.
    Author: Hussain MA, Siedlecki CA.
    Journal: Micron; 2004; 35(7):565-73. PubMed ID: 15219903.
    Abstract:
    The platelet membrane receptor alpha(IIb) beta(3) binds to adsorbed protein ligands including fibrinogen, von Willebrand factor and fibronectin, and is critically important in mediating platelet adhesion to damaged subendothelium and to synthetic biomaterial surfaces. This receptor is a member of the integrin family, a highly prevalent class of heterodimeric molecules consisting of a single alpha and beta subunit. In an ongoing effort to understand the mechanisms underlying platelet adhesion events, high-resolution atomic force microscopy (AFM) under dynamic conditions was used to obtain images of alpha(IIb) beta(3) molecules as well as aggregates of the protein. Images of integrin molecules were obtained by tapping mode AFM under aqueous buffer conditions following adsorption on a series of ultrasmooth model surfaces. On a model hydrophobic surface, detergents stabilizing the protein in solution competed for surface adsorption sites. When this detergent was removed from the system, the protein was predominantly seen as aggregates with head groups pointing outward. A limited number of individual integrin molecules were observed, and were found to have dimensions consistent with those reported previously by electron microscopy studies. Integrin molecules showed weak adhesion to the two hydrophilic surfaces used in the study, although formation of a lipid bilayer around surface-adsorbed molecules improved the resolution. At longer time periods, the integrin molecules embedded in this lipid bilayer exhibited sufficient mobility to form molecular aggregates. The structural measurements described in this study not only reveal three-dimensional features of the molecule, they represent an important step towards dynamic adsorption experiments and visualizing the integrin interacting with surface-adsorbed proteins as in biomaterial-induced thrombogenesis.
    [Abstract] [Full Text] [Related] [New Search]