These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evidence for a role of heat shock factor 1 in inhibition of NF-kappaB pathway during heat shock response-mediated lung protection. Author: Wirth D, Bureau F, Melotte D, Christians E, Gustin P. Journal: Am J Physiol Lung Cell Mol Physiol; 2004 Nov; 287(5):L953-61. PubMed ID: 15220113. Abstract: Heat shock transcription factor (HSF)-1 is recognized as a central component of the heat shock response, which protects against various harmful conditions. However, the mechanisms underlying the protection and the role of HSF-1 in these mechanisms have not yet been clearly elucidated. Using HSF-1 knockout mice (Hsf1(-/-)), we examined whether heat shock response-mediated lung protection involved an inhibition of the proinflammatory pathway via an interaction between HSF-1 and NF-kappaB, in response to cadmium insult. The HSF-1-dependent protective effect against intranasal instillation of cadmium (10 and 100 microg/mouse) was demonstrated by the higher protein content (1.2- and 1.4-fold), macrophage (1.6- and 1.9-fold), and neutrophil (2.6- and 1.8-fold) number in bronchoalveolar fluids, higher lung wet-to-dry weight ratio, and more severe lung damage evaluated by histopathology in Hsf1(-/-) compared with wild-type animals. These responses were associated with higher granulocyte/macrophage colony-stimulating factor (GM-CSF; 1.7-fold) but not TNF-alpha concentrations in bronchoalveolar fluids of Hsf1(-/-) mice compared with those of wild-type animals, indicating that HSF-1 behaved as a repressor of specific cytokine production in our model. To further investigate the mechanism of GM-CSF repression, we analyzed the NF-kappaB activity and IkappaB stability. The DNA binding NF-kappaB activity, in particular p50 homodimer activity, was higher in Hsf1(-/-) mice than in wild-type mice after cadmium exposure. These results provide a first line of evidence that mechanisms of lung protection depending on HSF-1 involve specific cytokine repression via inhibition of NF-kappaB activation in vivo.[Abstract] [Full Text] [Related] [New Search]