These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Influenza virus-induced sleep responses in mice with targeted disruptions in neuronal or inducible nitric oxide synthases. Author: Chen L, Duricka D, Nelson S, Mukherjee S, Bohnet SG, Taishi P, Majde JA, Krueger JM. Journal: J Appl Physiol (1985); 2004 Jul; 97(1):17-28. PubMed ID: 15220315. Abstract: Influenza viral infection induces increases in non-rapid eye movement sleep and decreases in rapid eye movement sleep in normal mice. An array of cytokines is produced during the infection, and some of them, such as IL-1beta and TNF-alpha, are well-defined somnogenic substances. It is suggested that nitric oxide (NO) may mediate the sleep-promoting effects of these cytokines. In this study, we use mice with targeted disruptions of either the neuronal NO synthase (nNOS) or the inducible NO synthase (iNOS) gene, commonly referred to as nNOS or iNOS knockouts (KOs), to investigate sleep changes after influenza viral challenge. We report that the magnitude of viral-induced non-rapid eye movement sleep responses in both nNOS KOs and iNOS KOs was less than that of their respective controls. In addition, the duration of rapid eye movement sleep in nNOS KO mice did not decrease compared with baseline values. All strains of mice had similar viral titers and cytokine gene expression profiles in the lungs. Virus was not isolated from the brains of any strain. However, gene expression in the brain stem differed between nNOS KOs and their controls: mRNA for the interferon-induced gene 2',5'-oligoadenylate synthase 1a was elevated in nNOS KOs relative to their controls at 15 h, and IL-1beta mRNA was elevated in nNOS KOs relative to their controls at 48 h. Our results suggest that NO synthesized by both nNOS and iNOS plays a role in virus-induced sleep changes and that nNOS may modulate cytokine expression in the brain.[Abstract] [Full Text] [Related] [New Search]