These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Diabetes-associated mutations in insulin: consecutive residues in the B chain contact distinct domains of the insulin receptor. Author: Xu B, Hu SQ, Chu YC, Huang K, Nakagawa SH, Whittaker J, Katsoyannis PG, Weiss MA. Journal: Biochemistry; 2004 Jul 06; 43(26):8356-72. PubMed ID: 15222748. Abstract: How insulin binds to and activates the insulin receptor has long been the subject of speculation. Of particular interest are invariant phenylalanine residues at consecutive positions in the B chain (residues B24 and B25). Sites of mutation causing diabetes mellitus, these residues occupy opposite structural environments: Phe(B25) projects from the surface of insulin, whereas Phe(B24) packs against the core. Despite these differences, site-specific cross-linking suggests that each contacts the insulin receptor. Photoactivatable derivatives of insulin containing respective p-azidophenylalanine substitutions at positions B24 and B25 were synthesized in an engineered monomer (DKP-insulin). On ultraviolet irradiation each derivative cross-links efficiently to the receptor. Packing of Phe(B24) at the receptor interface (rather than against the core of the hormone) may require a conformational change in the B chain. Sites of cross-linking in the receptor were mapped to domains by Western blot. Remarkably, whereas B25 cross-links to the C-terminal domain of the alpha subunit in accord with previous studies (Kurose, T., et al. (1994) J. Biol. Chem. 269, 29190-29197), the probe at B24 cross-links to its N-terminal domain (the L1 beta-helix). Our results demonstrate that consecutive residues in insulin contact widely separated sequences in the receptor and in turn suggest a revised interpretation of electron-microscopic images of the complex. By tethering the N- and C-terminal domains of the extracellular alpha subunit, insulin is proposed to stabilize an active conformation of the disulfide-linked transmembrane tyrosine kinase.[Abstract] [Full Text] [Related] [New Search]