These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Heme structures of five variants of hemoglobin M probed by resonance Raman spectroscopy. Author: Jin Y, Nagai M, Nagai Y, Nagatomo S, Kitagawa T. Journal: Biochemistry; 2004 Jul 06; 43(26):8517-27. PubMed ID: 15222763. Abstract: The alpha-abnormal hemoglobin (Hb) M variants show physiological properties different from the beta-abnormal Hb M variants, that is, extremely low oxygen affinity of the normal subunit and extraordinary resistance to both enzymatic and chemical reduction of the abnormal met-subunit. To get insight into the contribution of heme structures to these differences among Hb M's, we examined the 406.7-nm excited resonance Raman (RR) spectra of five Hb M's in the frequency region from 1700 to 200 cm(-1). In the high-frequency region, profound differences between met-alpha and met-beta abnormal subunits were observed for the in-plane skeletal modes (the nu(C=C), nu(37), nu(2), nu(11), and nu(38) bands), probably reflecting different distortions of heme structure caused by the out-of-plane displacement of the heme iron due to tyrosine coordination. Below 900 cm(-1), Hb M Iwate [alpha(F8)His --> Tyr] exhibited a distinct spectral pattern for nu(15), gamma(11), delta(C(beta)C(a)C(b))(2,4), and delta(C(beta)C(c)C(d))(6,7) compared to that of Hb M Boston [alpha(E7)His --> Tyr], although both heme irons are coordinated by Tyr. The beta-abnormal Hb M variants, namely, Hb M Hyde Park [beta(F8)His --> Tyr], Hb M Saskatoon [beta(E7)His --> Tyr], and Hb M Milwaukee [beta(E11)Val --> Glu], displayed RR band patterns similar to that of metHb A, but with some minor individual differences. The RR bands characteristic of the met-subunits of Hb M's totally disappeared by chemical reduction, and the ferrous heme of abnormal subunits was no longer bonded with Tyr or Glu. They were bonded to the distal (E7) or proximal (F8) His, and this was confirmed by the presence of the nu(Fe-His) mode at 215 cm(-1) in the 441.6-nm excited RR spectra. A possible involvement of heme distortion in differences of reducibility of abnormal subunits and oxygen affinity of normal subunits is discussed.[Abstract] [Full Text] [Related] [New Search]