These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evidence that catalytically-inactivated thrombin forms non-covalently linked dimers that bridge between fibrin/fibrinogen fibers and enhance fibrin polymerization.
    Author: Mosesson MW, Hernandez I, Siebenlist KR.
    Journal: Biophys Chem; 2004 Jul 01; 110(1-2):93-100. PubMed ID: 15223147.
    Abstract:
    Phe-pro-arg-chloromethyl ketone-inhibited alpha-thrombin [FPR alpha-thr] retains its fibrinogen recognition site (exosite 1), augments fibrin/fibrinogen [fibrin(ogen)] polymerization, and increases the incorporation of fibrin into clots. There are two 'low-affinity' thrombin-binding sites in each central E domain of fibrin, plus a non-substrate 'high affinity' gamma' chain thrombin-binding site on heterodimeric 'fibrin(ogen) 2' molecules (gamma(A), gamma'). 'Fibrin(ogen) 1' (gamma(A), gamma(A)) containing only low-affinity thrombin-binding sites, showed concentration-dependent FPR alpha-thr enhancement of polymerization, thus indicating that low-affinity sites are sufficient for enhancing polymerization. FPR gamma-thr, whose exosite 1 is non-functional, did not enhance polymerization of either fibrin(ogen)s 1 or 2 and DNA aptamer HD-1, which binds specifically to exosite 1, blocked FPR alpha-thr enhanced polymerization of both types of fibrin(ogen) (1>2). These results showed that exosite 1 is the critical element in thrombin that mediates enhanced fibrin polymerization. Des B beta 1-42 fibrin(ogen) 1, containing defective 'low-affinity' binding sites, was subdued in its FPR alpha-thr-mediated reactivity, whereas des B beta 1-42 fibrin(ogen) 2 (gamma(A), gamma') was more reactive. Thus, the gamma' chain thrombin-binding site contributes to enhanced FPR alpha-thr mediated polymerization and acts through a site on thrombin that is different from exosite 1, possibly exosite 2. Overall, the results suggest that during fibrin clot formation, catalytically-inactivated FPR alpha-thr molecules form non-covalently linked thrombin dimers, which serve to enhance fibrin polymerization by bridging between fibrin(ogen) molecules, mainly through their low affinity sites.
    [Abstract] [Full Text] [Related] [New Search]