These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Time-resolved absorption and UV resonance Raman spectra reveal stepwise formation of T quaternary contacts in the allosteric pathway of hemoglobin.
    Author: Balakrishnan G, Case MA, Pevsner A, Zhao X, Tengroth C, McLendon GL, Spiro TG.
    Journal: J Mol Biol; 2004 Jul 16; 340(4):843-56. PubMed ID: 15223325.
    Abstract:
    Hemoglobin undergoes a series of molecular changes on the nanosecond and microsecond time-scale following photodissociation of CO ligands. We have monitored these processes with a combination of transient absorption and resonance Raman (RR) spectroscopy. The latter have been acquired at higher data rates than previously available, thanks to kilohertz Ti:sapphire laser technology, with frequency-quadrupling into the ultraviolet. As a result of improved resolution of the UVRR time-course, a new intermediate has been identified in the pathway from the R (HbCO) to the T (deoxyHb) state. This intermediate is not detected via absorption transients, since the change in heme absorption is insignificant, but its lifetime agrees with a reported magnetic circular dichroism transient, which has been attributed to a quaternary tryptophan interaction. The new UVRR data allow elaboration of the allosteric pathway by establishing that the T-state quaternary contacts are formed in two well-separated steps, with time constants of 2.9 micros and 21 micros, instead of a single 20 micros process. The first step involves the "hinge" region contacts, as monitored by the Trp beta 37...Asp alpha 94 H-bond, while the second involves the "switch" region, as monitored by the Tyr alpha 42...Asp beta 99 H-bond. A working model for the allosteric pathway is presented.
    [Abstract] [Full Text] [Related] [New Search]