These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pyridinium-derived N-heterocyclic carbene complexes of platinum: synthesis, structure and ligand substitution kinetics. Author: Owen JS, Labinger JA, Bercaw JE. Journal: J Am Chem Soc; 2004 Jul 07; 126(26):8247-55. PubMed ID: 15225067. Abstract: A series of [(R-iso-BIPY)Pt(CH(3))L ](+)X(-) complexes [R-iso-BIPY = N-(2-pyridyl)-R-pyridine-2-ylidene; (R = 4-H, 1; 4-tert-butyl, 2; 4-dimethylamino, 3; 5-dimethylamino, 4); L = SMe(2), b; dimethyl sulfoxide (DMSO), c; carbon monoxide (CO), d; X = OTf(-) = trifluoromethanesulfonate and/or [BPh(4)](-)] were synthesized by cyclometalation of the [R-iso-BIPY-H](+)[OTF](-) salts 1a-4a ([R-iso-BIPY-H](+) = N-(2-pyridyl)-R-pyridinium) with dimethylplatinum-micro-dimethyl sulfide dimer. X-ray crystal structures for 1b, 2c-4c as well as complexes having bipyridyl and cyclometalated phenylpyridine ligands, [(bipy)Pt(CH(3))(DMSO)](+) (5c) and (C(11)H(8)N)Pt(CH(3))(DMSO) (6c), have been determined. The pyridinium-derived N-heterocyclic carbene complexes display localized C-C and C-N bonds within the pyridinium ligand that are indicative of carbene pi-acidity. The significantly shortened platinum-carbon distance, for "parent" complex 1b, together with NMR parameters and the nu(CO) values for carbonyl cations 1d-4d support a degree of Pt-C10 multiple bonding, increasing in the order 3 < 4 < 2 < 1. Degenerate DMSO exchange kinetics have been determined to establish the nature and magnitude of the trans-labilizing ability of these new N-heterocyclic carbene ligands. Exceptionally large second-order rate constants (k(2) = 6.5 +/- 0.4 M(-1).s(-1) (3c) to 2300 +/- 500 M(-1).s(-1) (1c)) were measured at 25 degrees C using (1)H NMR magnetization transfer kinetics and variable temperature line shape analysis. These rate constants are as much as 4 orders of magnitude greater than those of a series of structurally similar cationic bis(nitrogen)-donor complexes [(N-N)Pt(CH(3))(DMSO)](+) reported earlier, and a factor of 32 to 1800 faster than an analogous charge neutral complex derived from cyclometalated 2-phenylpyridine, (C(11)H(8)N)Pt(CH(3))(DMSO) (k(2) = 0.21 +/- 0.02 M(-1).s(-1) (6c)). The differences in rate constant are discussed in terms of ground state versus transition state energies. Comparison of the platinum-sulfur distances with second order rate constants suggests that differences in the transition-state energy are largely responsible for the range of rate constants measured. The pi-accepting ability and trans-influence of the carbene donor are proposed as the origin of the large acceleration in associative ligand substitution rate.[Abstract] [Full Text] [Related] [New Search]