These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A new look at the hemolytic effect of local anesthetics, considering their real membrane/water partitioning at pH 7.4.
    Author: Malheiros SV, Pinto LM, Gottardo L, Yokaichiya DK, Fraceto LF, Meirelles NC, de Paula E.
    Journal: Biophys Chem; 2004 Aug 01; 110(3):213-21. PubMed ID: 15228957.
    Abstract:
    The interaction of local anesthetics (LA) with biological and phospholipid bilayers was investigated regarding the contribution of their structure and physicochemical properties to membrane partition and to erythrocyte solubilization. We measured the partition into phospholipid vesicles-at pH 5.0 and 10.5-and the biphasic hemolytic effect on rat erythrocytes of: benzocaine, chloroprocaine, procaine, tetracaine, bupivacaine, mepivacaine, lidocaine, prilocaine, and dibucaine. At pH 7.4, the binding of uncharged and charged LA to the membranes was considered, since it results in an ionization constant (pK(app)) different from that observed for the anesthetic in the aqueous phase (pK(w)). Even though it occurred at a pH at which there is a predominance of the charged species, hemolysis was greatly influenced by the uncharged species, revealing that the disrupting effect of LA on these membranes is mainly a consequence of hydrophobic interactions. The correlation between the hemolytic activity and the LA potency shows that hemolytic experiments could be used for the prediction of activity in the development of new LA molecules.
    [Abstract] [Full Text] [Related] [New Search]